Introduction of Linear Regression

Linear regression is one of the fundamental and most useful algorithms in Supervised Machine Learning. If our goal is a prediction, or forecasting, or error reduction then we can use linear regression to fit a predictive model. We can also use linear regression analysis to quantifies the relationship between the response and explanatory variables.

Topics
1. What is a linear regression?
2. [bookmark: _GoBack]Types of linear regression
3. Cost Function
4. Gradient Descent
5. Code

What is a Linear Regression?

Linear regression is the oldest and the simplest algorithm in supervised machine learning and unsupervised machine learning. It is a linear approach to modeling the relationship between dependent variables or output variables (Y) and explanatory variables or independent variables (X)

So, There are two types of linear regression problems:

1. Simple Linear Regression
2. Multivariable Linear Regression

Simple Linear Regression
In this, we find the relationship between two continuous variables where one is the independent variable (X) and the other is a response or dependent variable (y).
Hypothesis function for simple linear regression :
Y = P1 + P2.X

While training the model
X: Input training data
Y: Labels
P1: Intercept
P2: Coefficient
So, once we find the best P1 and P2 values, we get the best fit line and when we use our model for prediction, it will predict the values of Y for the input of X.

Multivariable Linear Regression

There are multiple independent variables (X) contributed to predicting the dependent variable (Y). For example, there are many features or variables that decide sales like radio, Tv, newspaper, etc.
Y(sales) = 𝞡1 . Radio + 𝞡2 . TV + 𝞡3 . News
Or
Y = 𝞡1 . X1 + 𝞡2 . X2 + 𝞡3 . X3 + 𝞡4 . X4 …..

Where p1, p2, p3 are the coefficients or weights, our model will try and learn.

Cost Function (J)

To achieve the best-fit regression line, the model aims to predict y values such that the error difference between the predicted value and the true value is minimum.
[image: A close up of a logo

Description automatically generated]
Cost function (J) of the linear regression is Root Mean Squared Error (RMSE) between predicted value y and true value y. We tweak parameters to minimize the above cost function (minimizing RMSE value) to achieve the best fit line model uses gradient descent.

Gradient Descent

The next important concept needed to understand in linear regression is gradient descent. Gradient descent is a method of updating p1 and p2 to reduce the cost function (J). We start with some random values p1 and p2 then we change these values to reduce cost function.
In gradient descent, we try to step down the cost function in the direction of the steepest descent and every step is determined by the parameter alpha or learning rate.
[image: A picture containing outdoor

Description automatically generated]
Higher learning rate					Small learning rate

If we choose our alpha or learning rate very high then gradient descent overshoots the minimum and it may fail to converge or diverge. And if we choose alpha to be very low then gradient descent will take longer time to reach minima.
So we have to choose alpha optimum so that it can take lesser time and also converge the cost function to the minima.
Below we will take code to explain the linear regression using the scikit-learn library.

Code
Let’s import the library before proceeding our dataset.
[image:]
With the help of the pandas library, we read the CSV dataset.
[image:]

Know we split our dataset into training and test set with test size ⅓ of the dataset.

[image:]

[image:]
R square is good for telling how accurate your algorithm works so more the R square value means better accuracy you get. So in our case, R square value is 97% which is good for prediction.

[image:]
We plot the regression line in our test dataset to see how well our algorithm will give a prediction result.[image:]

Conclusion
We think so you have learned a linear regression algorithm very well and clear all your points regarding linear regression from here. We are glad if you read more machine learning topics blog from analytic steps. More interesting blogs are on the way to keep you updated and please subscribe to analytic steps to keep you up to date.

image3.png
In [1]:

Simple Linear Regression

Importing the libraries

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

image4.png
In [2]: # Importing the dataset
dataset = pd.read_csv('linear_dataset.csv')
dataset.head()

Out[2]:
YearsExperience Salary

1.1 39343.0
1.3 46205.0
15 37731.0

2.0 43525.0

A w N B O

22 39891.0

image5.png
In [3]: X
y

dataset.iloc[:, :-1].values
dataset.iloc[:, 1].values

Splitting the dataset into the Training set and Test set

X_train, X test, y train, y test = train_test_split(X, y, test_size = 1/3, random_state = 0)

image6.png
In [4]): |# Fitting Simple Linear Regression to the Training set

regressor = LinearRegression()
regressor.fit(X_train, y train)

Predicting the Test set results
y_pred = regressor.predict(X_test)
print('R2 Score:' , r2_score(y_test,y pred))

R2 Score: 0.9749154407708353

image7.png
< @ B 4 ¥ MRin EH C W Code v =

In [5]: # Visualising the Training set results
plt.scatter(X_train, y_train, color = 'red')
plt.plot(X_ train, regressor.predict(X_train), color = 'blue')
plt.title('Salary vs Experience (Training set)')
plt.xlabel('Years of Experience')
plt.ylabel('Salary"')
plt.show()

Salary vs Experience (Training set)

120000

100000

80000

Salary

60000

40000

image8.png
In [6]: # Visualising the Test set results
plt.scatter(X_test, y test, color = 'red')
plt.plot(X train, regressor.predict(X train), color = 'blue')
plt.title('Salary vs Experience (Test set)')
plt.xlabel('Years of Experience')
plt.ylabel('Salary')
plt.show()

Salary vs Experience (Test set)

120000

100000

80000

Salary

60000

40000

Years of Experience

image9.png

image10.png

image1.png
J = 1T Ooea= i

image2.png
S

