Introduction to K- Nearest Neighbors (KNN) Algorithm

Overview
1. Importance and practical implementation of KNN
2. Historical background of KNN
3. What is KNN?
4. Code

Importance and practical implementations of KNN
1. KNN is one of the most important algorithms of Machine Learning and data mining. Many machine learning algorithms use distance metrics or KNN to know the input data pattern to know or in order to achieve a data-based decision.
2. KNN is used extensively to understand and create value from patterns in retail business data and being used to simplify management and security in daily retail business operations. KNN techniques are also used for pattern recognition and this is often used for theft prevention. KNN also used pattern recognition in credit card usage.
3. KNN is also useful in point pattern detection to know the purchasing behavior of customers. KNN is one of the most useful algorithms for text categorization and text mining.
4. In agriculture, it has been applied, for instance, for simulating daily precipitations and other weather variables. Stock market forecasting is one of the most core financial tasks of KNN.
5. The KNN algorithm has been applied for analyzing microarray gene expression data, where the KNN algorithm has been coupled with genetic algorithms.

[bookmark: _GoBack]Historical Background of KNN
K-nearest neighbor classification was developed from the need to perform discriminant analysis when reliable parametric estimates of probability densities are unknown or difficult to determine. In an unpublished US Air Force School of Aviation Medicine report in 1951, Fix and Hodges introduced a non-parametric method for pattern classification that has since become known the k-nearest neighbor rule. They introduced a novel approach to nonparametric classification by relying on the 'distance' between points or distributions. The basic idea is to classify an individual to the population whose sample contains the majority of 'nearest neighbors.

What is K Nearest Neighbors (KNN)?
· KNN has basically classified a data point based on how its neighbors are classified. KNN is a simple algorithm yet most important that stores all the available cases and classifies a new case based on a similarity measure.
· KNN is also known as a non-parametric Lazy learning algorithm.
· KNN is used for both classification and regression. In both cases, the input consists of the K-closest examples in the feature space.
· In this, choosing an optimum value of K is very important and it is best done by inspecting data and hit and trial method.
· The best results come out when the K value is between the range of 3-10.
· Lesser k values mean our algorithm is less stable and higher k means it is more stable.
· We generally take k an odd number to have a tiebreaker.

Below, it is the example of one neighbor, and we can see it is the most intuitive nearest neighbor type of classifier and is one nearest classifier that assigns new data input label to its nearest class but as the size of dataset approaches to infinity error rate increases.

[image: A close up of a map

Description automatically generated]
 1NN classification map for similar data
We can see that is very unstable mapping and it does not generalize our new input data well. That’s why k values matter so much in knn. Below we take an example of three-nearest neighbors’ example:
[image: A screenshot of a cell phone

Description automatically generated]
We consider three-nearest neighbors, which three are the closest training data point to the point we want to make a prediction for and then the prediction is simply known output for this training point.

When considering more than one neighbor, we use voting to assign a label. This means that for each test point, we count how many neighbors belong to class 0 and how many neighbors belong to class 1. We then assign the class that is more frequent or majority class among the k-nearest neighbors. The above example uses three closest neighbors.

While we only explain it into the binary classification problem, but this method can be applied to a dataset with any number of classes. For more classes, we count how many neighbors belong to each class and again will predict the most frequent class.

Now we can illustrate how we can apply the k-nearest neighbor's algorithm using scikit-learn. Code that contains all libraries that we need to first import to run an algorithm.

[image:]

Now we have to load a dataset from the CSV file and showcase the dataset with the help of head() function.

[image:]

[image:]

Now we have to find min and max value of Age and EstimatedSalary to know the dataset more clearly.

[image:]
[image:]

As we see in our dataset that UserID is not important so we can remove that from our dataset and split that dataset into train and test column.

[image:]

Feature scaling is necessary steps before applying knn method in the dataset.It is a step of Data Pre Processing which is applied to independent variables or features of data. It basically helps to normalize the data within a particular range. Sometimes, it also helps in speeding up the calculations in an algorithm.
[image:]

when k =1

[image:]

[image:]

when k = 2

[image:]

when k = 3

[image:]

when k = 4

[image:]

 when k = 5

[image:]

when k = 6

[image:]

so, as we see that if the value of k =6 then it is not impacting our result so much which means we can consider k = 5 is efficient for n nearest neighbors.

Know we can say that k = 5 is good for making a prediction of the dataset so let’s plot data on training and test while considering k =5.

[image:]

[image:]

[image:]

[image:]

Conclusion
As we learned the basic introduction of KNN algorithm in this blog. More blogs are on the way where you will learn KNN for classifiers and KNN for regression. Till then, Happy Reading!

[bookmark: _gjdgxs]
image4.png
In [2]: # Importing the dataset
dataset = pd.read_csv('dataset.csv')
dataset.head()

image5.png
out[2]:

UserID Gender Age EstimatedSalary Purchased
0 15624510 Male 19 19000 0
1 15810944 Male 35 20000 0
2 15668575 Female 26 43000 0
3 15603246 Female 27 57000 0
4 15804002 Male 19 76000 0

image6.png
In [3]:

min_age = np.min(dataset.iloc[:,2])
max_age = np.max(dataset.iloc[:,2])
print('Minimum Age :',min_age)
print('Maximum Age :',max_age)

Minimum Age : 18
Maximum Age : 60

image7.png
In [4]:

min_estimatedsalary = np.min(dataset.iloc[:,3])
max_estimatedsalary = np.max(dataset.iloc[:,3])
print('Minimum EstimatedSalary :',min_estimatedsalary)
print('Maximum EstimatedSalary :',max_estimatedsalary)

Minimum EstimatedSalary : 15000
Maximum EstimatedSalary : 150000

image8.png
In [5]: dataset.iloc[:, [2, 3]].values

dataset.iloc[:, 4].values

X
y
Splitting the dataset into the Training set and Test set
X

train, X_test, y_train, y_test = train_test split(X, y, test_size = 0.25, random_state = 0)

image9.png
In [6]: # Feature Scaling

sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

image10.png
In [7]: # Fitting K-NN to the Training set

classifier = KNeighborsClassifier(n_neighbors = 1, metric = 'minkowski', p = 2)
classifier.fit(X train, y train)

Predicting the Test set results

y pred = classifier.predict(X test)

image11.png
In [8]: print('Accuracy Score :',accuracy score(y test, y pred))

Accuracy Score : 0.87

image12.png
In [11]: # Fitting K-NN to the Training set

classifier = KNeighborsClassifier(n_neighbors = 2, metric = 'minkowski', p = 2)
classifier.fit(X train, y_train)

Predicting the Test set results

y_pred = classifier.predict(X_test)

print('Accuracy Score :',accuracy score(y test, y pred))

Accuracy Score : 0.9

image13.png
In [12]: # Fitting K-NN to the Training set

classifier = KNeighborsClassifier(n_neighbors = 3, metric = 'minkowski', p = 2)
classifier.fit(X train, y_train)

Predicting the Test set results

y_pred = classifier.predict(X_test)

print('Accuracy Score :',accuracy score(y test, y pred))

Accuracy Score : 0.93

image14.png
In [13]: # Fitting K-NN to the Training set

classifier = KNeighborsClassifier(n_neighbors = 4, metric = 'minkowski', p = 2)
classifier.fit(X_ train, y train)

Predicting the Test set results

y_pred = classifier.predict(X_ test)

print('Accuracy Score :',accuracy_score(y_test, y pred))

Accuracy Score : 0.92

image15.png
In [14]): |# Fitting K-NN to the Training set

classifier = KNeighborsClassifier(n_neighbors = 5, metric = 'minkowski', p = 2)
classifier.fit(X train, y_train)

Predicting the Test set results

y_pred = classifier.predict(X_ test)

print('Accuracy Score :',accuracy_score(y test, y pred))

Accuracy Score : 0.93

image16.png
In [15]: |# Fitting K-NN to the Training set

classifier = KNeighborsClassifier(n_neighbors = 6, metric = 'minkowski', p = 2)
classifier.fit(X train, y_train)

Predicting the Test set results

y_pred = classifier.predict(X_ test)

print('Accuracy Score :',accuracy_score(y test, y pred))

Accuracy Score : 0.93

image17.png
In [16]:

Visualising the Training set results

X_set, y set = X train, y train

X1,
plt.

plt.
plt.
for

plt.
plt.
plt.
plt.
plt.

X2 = np.meshgrid(np.arange(start X_set[:, 0].min() - 1, stop = X_set[:, O0].max() + 1, step
np.arange(start X_set[:, 1].min() - 1, stop X set[:, 1].max() + 1, step
contourf (X1, X2, classifier.predict(np.array([X1l.ravel(), X2.ravel()]).T).reshape(X1.shape),
alpha = 0.75, cmap = ListedColormap(('#FFAAAA', '#0OAAFF')))
xlim(X1.min(), X1.max())
ylim(X2.min(), X2.max())
i, j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y set == j, 0], X set[y_set == j, 1],
c = ListedColormap(('#FFAAAA", '#00AAFF'))(i), label = j)
title('K-NN (Training set)')
xlabel('Age')
ylabel('Estimated Salary')
legend()
show()

image18.png
K-NN (Training set)

-

°

Estimated Salary

|
-

-2

d "’v

image19.png
In [17]:

Visualising the Test set results

X_set, y set = X_test, y_test

X1,

plt.

plt.
plt.

for

plt.
plt.
plt.
plt.
plt.

X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X _set[:, 0].max() + 1, step
np.arange(start = X _set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step
contourf (X1, X2, classifier.predict(np.array([X1l.ravel(), X2.ravel()]).T).reshape(X1l.shape),
alpha = 0.75, cmap = ListedColormap(('#FFAAAA', '#0OAAFF')))
xlim(X1.min(), X1.max())
ylim(X2.min(), X2.max())
i, j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
c = ListedColormap(('#FFAAAA', '#0OAAFF')) (i), label = j)
title('K-NN (Test set)')
xlabel('Age')
ylabel('Estimated Salary')
legend()
show()

image20.png
K-NN (Test set)

Estimated Salary

|
-

b

image1.png

image2.png
raining class 0
training class 1

test prediction 1

~

~
~

~
<o e 0

test prediction 0

Predictions made by the three nearest model on dummy dataset

image3.png
In [1]:

K-Nearest Neighbors (K-NN)

Importing the libraries
import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from
from
from
from
from

sklearn.model_selection import train_test split
sklearn.preprocessing import StandardScaler
sklearn.neighbors import KNeighborsClassifier
sklearn.metrics import accuracy score
matplotlib.colors import ListedColormap

