Iterative Imputations in Machine Learning

[image:]
Image Source
Missing values in machine learning are the values containing NaN values in the dataset. Handling missing values in machine learning is a very hectic and essential task while working with datasets having missing values. There are many methods used to impute or fill in the missing values in the dataset among which Iterative Imputer is one of the widely used and most frequent strategies to handle missing values.
Iterative Imputer is also known as MICE, where MICE stands for multivariate imputation by chained equations.
Iterative Imputation is a multivariate imputation technique that uses all the other variables present in the dataset to fill in or impute the missing values.
Table of Content
1. Categories of Missing Data
2. Iterative Imputer: PROs and CONs
3. Itertive Imputer: How it works
4. Iterative Imputer: Sci-kit Learn Approach
5. Conclusion
Categories of Missing Data
There are majorly 3 categories of missing data:
1. Missing completely at random
2. Missing at random
3. Missing not at random
1. Missing completely at random:
Missing completely at random is a type of missing data in which there is an error for some reason due to which data is randomly not filled while collecting the data. In this type of missing data, we can not fill or impute the missing data if we even try to fill it with the help of many other methods available.
Example: There was an error in the system due to which randomly 5 data samples were not collected.
2. Missing at random:
Missing at random is a type of data in which the source itself did not fill the data while collecting the data due to some reasons. In this type of data, we can fill or impute the missing data using some other data available in the dataset. MICE or Iterative Imputer can b used on this type of missing data only.
Examples: A user did not fill in his/her weight or height due to a lack of information or some other reasons.
3. Missing not at random:
A missing bot at random is a type of dataset in which part of some data is removed or deleted intentionally.
Example: Someone intentionally removed part of the data due to some reasons.
IterativeImputer: PROs and CONs

Iterative Imuter is a multivariate imputation technique that Is a very accurate imputation technique as it uses a machine learning algorithm itself to impute the missing values.
While working with Iterative Imputer there is a higher computation power needed and it takes more time to fill in the missing values as there is an algorithm working behind this imputation.
When there is Iterative imputer used for missing values imputation, there is a need of putting a whole training dataset on a live server if there is missing data entered in the dataset then there will be a need to imputing it with Iterative Imputer and it needs again a whole training data for imputation.
IterativeImputer: How it Works

As we know Iterative Imputation is a multivariate imputation technique that uses multiple variables to fill the particular missing values in the dataset.
Let's try to understand the same process with examples. Suppose that we have a dataset which is having missing values at random.
Step 1: Fill in all the missing values by the mean of their respective mean column.
Let's suppose we have 3 missing values in 3 different columns, then we have to replace the missing values with the mean of their respective column.
Step 2: Move left to right
In step 2, we start moving left to right and we select all the columns in which the missing value is imputed by its mean. Here whichever column appears first whole moving left to right in the dataset column-wise, we again replace the mean the value with NaN value.
Let's suppose there was a missing value replaced by its mean in column 1, then again while moving left to right in the dataset, column 1 will appear first and the missing value will again be replaced by the NaN value.
Step 3: Start Predicting
In the next step, the value which is replaced by the NaN value (For our case column 1), will also lie to the particular row index. Now let's suppose the row index is 3 for our case. So for the predicting algorithm all the other values except row index 3 will be the training dataset and row index 3 would be the testing dataset, where the target column would be column 1, as it contains NaN value.
So here the model will be trained on the training dataset and the target column would be the column having missing value. Once the model is trained on the training dataset, the model will take input from the parameters of the testing rows (for our case index 3) and will predict the output for row index 3 and column 1.
Step 4: Do it for all the other columns
As we have an actual imputed value for index 3 of column 1, we will now move from the left to right and again choose a column in which the missing data was imputed by its mean. Once again all the other steps discussed above will be repeated in the same manner and the data will be imputed for all the other missing values.
Step 5: Perform it recursively
In the last step where all the missing values are imputed by the Iterative Imputer approach, the difference of values imputed of the current and next iteration would be calculated and the same process will run for many iterative tell the difference between two iterations reaches zero.
Let's suppose we imputed all the values by their mean in iteration, now in iteration 2, the values are imputed using iterative imputer, and there will be some difference between the imputed values in iterations 1 and 2. the same process will again be repeated in iteration 3 and again the difference between imputed values would be calculated for iteration 2 and 3.
The same process will be repeated till the difference between the 2 iterations reaches zero. The particular iteration in which the difference between imputed values with its previous iteration becomes zero will be considered as the final imputed values for the dataset.
IterativeImpuer: Scikit-Learn Approach

Let's implement IteratieImputer using Scikit-Learn
To use IterativeImputer we need to import the IterativeImputer. To import use
`
from sklearn.impute import IterativeImputer
`
As Iterative Imputer uses an algorithm in the backend to fill the missing values, we will use LinearRegression as a base estimator here.
`
from sklearn.liner_model import LinearRegression
lr = LineRRegression()
`
To implement the iterative Imputer use:
`
Imputer = IterativeImputer(estimator = lr, verbose = 2, max_iter = 30)

`
Here while imputing the linear regression algorithm will be used it is passed in the estimator and it will run for max iter or iteration 30 count.
Let's suppose we have missing values in the variable X, to fit and impute the values in X, use:
`
X = Imputer.fit(X)
X = Imputer.transform(X)
`
Conclusion
In this article, the working mechanism of an Iterative Imputer is used to fill the missing values at random in the dataset. The categories of missing data and the working mechanism of the Iterative Imputer are discussed theoretically and with the Scikit-Learn approach with PROs and CONs.
Some Key Takeaways from this article are:
1. Iterative Imputer can be used on all types of missing datasets but it performs extremely well on missing the random type of missing data.
2. Iterative Imputer is a multi-variate imputation technique used for accurate results which require higher computation power and time to compute as it used a machine learning algorithm in the backend to impute the missing values.
3. Iterative Imputer uses an iterative or recursive method moving left to right in the data with a machine learning algorithm passing in an estimator to impute the missing data. The iteration cam is controlled using max_iter parameters in the IterativeImputer class.

image1.png

