- Avinash Mishra
- Aug 21, 2019
- Machine Learning

**Logistic Regression** is basically a predictive model analysis technique where the output (target) variables are discrete values for a given set of features or input (X). It is a very powerful yet simple supervised classification algorithm in machine learning.

Around 60% of the world’s classification problems can be solved by using the logistic regression algorithm. In this blog, we go all the basic concepts of logistic regression with code explanation.

Logistic regression is one of the most common algorithms used for * binary classification*. It predicts the probability of occurrence of a binary outcome using a logit function. It is a special case of linear regression as it predicts the probabilities of outcome using log function.

We use the activation function (sigmoid) to convert the outcome into categorical value. There are many examples where we can use logistic regression for example, it can be used for fraud detection, spam detection, cancer detection, etc.

Linear Regression is used when our dependent variable is continuous in nature for example weight, height, numbers, etc. and in contrast, Logistic Regression is used when the dependent variable is binary or limited for example: yes and no, true and false, 1 or 2 or 3 or 4, etc. Linear regression uses the *ordinary least square* method to minimize the error and arrives at the best possible solution, and the Logistic regression achieves the best outcomes by using the *maximum likelihood* method. In the 19th century, people use linear regression on biology to predict health disease but it is very risky for example if a patient has cancer and its probability of malignant is 0.4 then in linear regression it will show that cancer is benign (because probability comes <0.5). That’s where Logistic Regression comes which only provides us with binary results.

It is a mathematical function having a characteristic that can take any real value and map it to between 0 to 1 shaped like the letter “S”. The sigmoid function also called a logistic function.

**Y = 1 / 1+e ^{-z}**

__Sigmoid function__

So, if the value of z goes to positive infinity then the predicted value of y will become 1 and if it goes to negative infinity then the predicted value of y will become 0. And if the outcome of the sigmoid function is more than 0.5 then we classify that label as class 1 or positive class and if it is less than 0.5 than we can classify it to negative class or label as class 0.

You can find the dataset here __Dataset__. First of all, before proceeding we first import all the libraries that we need to use in our algorithm

After initializing all the libraries that we need in our algorithm know we have to import our dataset with the help of the pandas library and split our dataset into training and testing set with the help of the train_test_split library.

As we divide our dataset on the basis of train and test split know we have to scale our feature dataset with the help of StandardScaler library and apply logistic regression on the training set and check the accuracy sore with the help of accuracy_score library.

We have successfully applied logistic regression on the training set and see that our accuracy scores come 89%. So, if we take on basis of algorithm it is not so much worse for prediction. As we get the accuracy score of our model now we can see a pictorial representation of our dataset first we have to visualize the result on the basis of the training dataset.

We plot a picture on the basis of age and estimated salary in which we bifurcate our result in a 0 and 1 value basis. In the same process, we apply for the test set and visualize our result how accurate our prediction is.

The main concept regarding this blog is to explain logistic regression and simple explanation via python code. I think the above blog is very helpful for you to clear your doubts regarding logistic regression more blogs are on the way to stay tuned with us! Keep exploring __Analytics Steps__.

0%

Introduction to Time Series Analysis: Time-Series Forecasting Machine learning Methods & Models

READ MOREHow is Artificial Intelligence (AI) Making TikTok Tick?

READ MOREThe Essence of Game Theory in Artificial Intelligence - 5 Types of Game Theory and Nash Equilibrium

READ MORE7 Types of Activation Functions in Neural Network

READ MOREConvolutional Neural Network (CNN): Graphical Visualization with Code Explanation

READ MOREDeep Learning - Overview, Practical Examples, Popular Algorithms

READ MORE6 Dynamic Challenges in Formulating the Imperative Recommendation System

READ MOREIntroduction to Machine Learning: Supervised and Unsupervised Learning

READ MOREWhat are the roles, opportunities and challenges posed by Big Data in Tourism?

READ MOREDriving Digital Transformation with Data Science: What, How and Why?

READ MORE